恒小花:人工智能究竟有多耗能

资讯 来源:中国风投网   阅读量:14361   会员投稿 2024-02-22 16:02

  众所周知,机器学习消耗大量的能量。所有这些能够制作视频的人工智能模型都在消耗每小时兆瓦数的电量。但似乎没有人——甚至是开发这项技术的公司——能确切地说出成本是多少。

  有专家表示,这些数字只是人工智能总消耗量的一小部分。这是因为机器学习模型是非常可变的,能够以极大地改变其功耗的方式进行配置。此外,Meta、微软和OpenAI等公司根本不愿分享相关信息。

  训练大模型需要大量的能源,比传统的数据中心活动消耗更多的电力。例如,训练像GPT-3这样的大型语言模型,估计要使用不到1300兆瓦时(MWh)的电力;大约相当于130个美国家庭每年消耗的电量。相比之下,流媒体一小时需要大约0.8千瓦时(0.0008兆瓦时)的电力。这意味着你必须观看162.5万小时才能消耗与训练GPT-3相同的能量。

  但很难说这样的数字如何适用于当前最先进的系统。能源消耗可能会更大,因为人工智能模型的规模多年来一直在稳步上升,而更大的模型需要更多的能源。另一方面,公司可能会使用一些经过验证的方法使这些系统更节能,这将抑制能源成本的上升趋势。

  人工智能不是免费的

  随着人工智能变得有利可图,很多公司变得更加保密。回到几年前,像OpenAI这样的公司会公布他们训练制度的细节——什么硬件,多长时间。但ChatGPT和GPT-4等最新型号根本不存在同样的信息。

  这种保密部分是由于公司之间的竞争,另一部分是为了转移批评。人工智能的能源使用统计数据——尤其是它最无聊的用例——自然会让人把它与加密货币的浪费进行比较。“人们越来越意识到,所有这些都不是免费的”。

  生成式人工智能革命的全球成本

  这项研究提供了有用的相对数据,尽管不是绝对数字。它表明,人工智能模型在生成输出时需要比对输入进行分类时更多的功率。它还说明,任何涉及图像的东西都比文本更耗能。Luccioni说,尽管这些数据的偶然性可能令人失望,但这本身就说明了一个问题。

  她说:“人工智能革命带来的全球成本是我们完全不知道的,对我来说,这种蔓延尤其具有指示性。”“真正的原因是我们不知道。”

  如果我们想更好地了解地球的成本,还有其他方法可以采取。如果我们不是专注于模型推理,而是缩小范围呢?

  大模型越做越大

  他担心的是,人工智能的情况可能会有所不同,因为企业倾向于在任何任务中简单地投入更大的模型和更多的数据。一旦模型或硬件变得更高效,它们就会把这些模型做得更大。

  效率的提高能否抵消不断增长的需求和使用量,这个问题是无法回答的。和卢奇奥尼一样,德弗里斯对缺乏可用数据表示遗憾。

  一些搞人工智能的公司声称,技术可以帮助解决这些问题。普里斯特代表微软表示,人工智能“将成为推进可持续发展解决方案的有力工具”,并强调微软正在努力实现“到2030年实现碳负、水正和零浪费的可持续发展目标”。

  但一家公司的目标永远不可能涵盖整个行业的全部需求。可能需要其他方法。

免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。

友情合作